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ABSTRACT
Artificial Intelligence (AI) has been enhancing data analysis effi-
ciency and accuracy during plant phenotyping, which is vital for
tackling global agricultural and environmental challenges. Design-
ing a reliable AI system to assist precise plant phenotyping begins
with high-quality phenotypic feature annotation, which usually
involves collaboration between plant scientists and AI specialists.
However, due to the high level of diversity in these researchers’
backgrounds, it is likely that they have differing user needs from a
fine-grained plant feature annotation system. We conducted semi-
structured interviews with eight experienced annotators from di-
verse backgrounds, and observed how they interact with their pre-
ferred annotation system, to elucidate the challenges faced when
annotating plant features and identify user needs. We collected
qualitative responses to the interview questions, and conducted
a quantitative evaluation of the agreement of their annotations
on the given images. By analyzing the participants’ behaviors and
the collected data, we identified common user needs and derived
implications for the design of an AI-assisted annotation system,
including providing a range of annotation options, the flexibility
to adapt annotations, and functions to help addressing uncertainty.
Our research contributes to the design of systems that make anno-
tations efficient and reliable, not only benefiting plant phenotyping,
but also other interdisciplinary fields that rely on user-driven an-
notations.
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1 INTRODUCTION
Plant phenotyping, the science of measuring and analyzing plant
traits or features, has become increasingly crucial in addressing
global agricultural and environmental challenges. To understand
plant growth, breeding, and how plants respond to their environ-
ment, researchers face the challenge ofmanaging and analyzing vast
amounts of plant data. Artificial intelligence (AI) techniques have
become essential tools with the capacity to automatically identify
and analyze intricate plant structures [31, 39, 40, 42, 45]. These AI
advancements play a pivotal role in enhancing the precision and ef-
ficiency of plant phenotyping, leading to practical applications like
weed and disease detection, as well as monitoring plant moisture
and nutrient cycling. Yet, a reliable AI-assisted plant phenotyping
system depends on high quality phenotypic trait annotations.

Phenotypic traits annotation is an essential step to support AI-
assisted agricultural applications. As an interdisciplinary subject,
phenotypic traits annotation involves annotators with diverse back-
grounds, spanning both plant scientists [21, 23, 26, 30, 38, 43] and
AI specialists [4, 12, 46]. This diversity results in varying mental
models, leading to distinct user behaviors and needs [38, 40]. For
instance, plant scientists specialize in identifying phenotypic traits.
However, they may lack experience in integrating AI-assisted fea-
tures to improve efficient annotation [20, 38]. Additionally, they
might be unfamiliar with how AI algorithms will use their annota-
tions andwhat the different annotation requirements are for distinct
AI algorithms. On the other hand, AI experts excel at addressing
annotation challenges but may not possess the domain-specific
knowledge to know what to annotate [13, 40, 44]. In addition, De-
signer of AI system may unintentionally overlook the perspectives
of non-technical users. This can lead to a lack of awareness when
designing explainable AI-assisted features for effective annotation
of phenotypic traits, particularly for those who are unfamiliar with
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AI concepts. Consequently, designing a system that facilitates ef-
ficient, reliable, and collaborative annotation across these diverse
user groups remains a significant challenge.

To tackle this challenge, our research focused on how user be-
haviors are affected and adapted by factors including annotators’
prior knowledge, image quality, annotation methods, and system
features. We conducted a semi-structured interview study and ob-
served annotators walking through their preferred annotation sys-
tem, to understand their mental models during interactions with
annotation software. Our research was centered on annotating fine,
hair-like phenotypic traits [33, 41], primarily because these traits
are prevalent in a wide range of plant organs from roots to grass
leaves and stems, and naturally occur in diverse environments, in-
cluding soil and the surrounding vegetation. Moreover, these traits
hold significant real-world relevance, with applications ranging
from studying the ecological role of plant roots to detecting weeds
in agriculture and optimizing turf grass management. In addition
to collecting qualitative data (i.e., responses to the interview ques-
tions as well as the observations of system use), we conducted a
quantitative measurements to assess annotation consistency made
among participants.

2 RELATEDWORK
This section illustrates how users from various backgrounds select
their preferred annotation systems based on distinct user needs
observed in previous studies. It also discusses the essential features
of current annotation systems, categorized by how the annotator
interacts with the systems. Finally, we elucidated the limitations
in existing annotation systems, which often overlook diverse user
needs.

2.1 User Preferences in Annotation System
Selection

Generally, in the domain of fine-grained level plant phenotypic
traits annotation, there exist three commonly employed approaches
that are driven by the diverse needs of annotators. First, some
plant scientists may first seek specialized platforms that support
both annotation and phenotypic trait analysis. For instance, root
annotators [36, 38] utilize software such as WinRhizo Tron [25],
RootNav [23], GLO-Roots [26], and RootSnap [19] to trace roots
while measuring their length, surface area, tip angle, child count,
etc. However, annotators usually face significant time expenditures
when dealing with poorly designed annotation tools. For example,
when employing an annotation tool which restricts users to tracing
roots with a specific diameter, Xu et al. [38] encountered the need
to frequently alter the direction and diameters of annotations to
accommodate curly roots with varying orientations and sizes.

When specialized software for phenotyping analysis isn’t readily
available, annotators often seek flexible and user-friendly alterna-
tives. For instance, Wang et al. [35] employed GIMP [34] for root
annotation, while Guo et al. [13] used ImageJ [1] for annotating
avocado injuries. Additionally, in studies involving computer engi-
neering students and researchers, some annotators prefer dedicated
image annotation systems like the Computer Vision Annotation
Tool (CVAT [29]), VGG Image Annotator (VIA [8, 9]), and Segment

Anything Model (SAM [17]), as these offer various efficient anno-
tation tools. However, these popular systems can pose challenges
in plant phenotyping because they are primarily designed for com-
mon objects such as humans and vehicles, which have different
characteristics from plant traits (e.g., fine roots mixed with complex
surroundings).

In another scenario, when AI scientists take on the role of an-
notators, some prefer coding annotations from scratch, leveraging
techniques and algorithms based on their expertise; for example, Yu
et al. [40] and Xu et al. [39] employed superpixel selection to anno-
tate roots, and Biswas, S. and Barma, S. [4] utilized thresholding and
morphological operations to annotate potato cells. Besides coding
from scratch, open-source code packages supporting phenotypic
trait annotation, such as PlantCV [11] and RootPainter [31], have
been developed for annotators with programming knowledge. How-
ever, installing and running these packages often requires some
computer science proficiency, which can be a hurdle for researchers
without an engineering background.

Annotators with different backgrounds likely have different pref-
erences on the annotation systems that meet their goals and fit their
mental models. Plant scientists might focus more on utility for plant
analysis while a computer engineer might consider the annotation
from the algorithm perspective; non-expert annotators might find
a platform with efficient annotation features to be easier to learn
and use. Therefore, to build an explainable annotation system, we
need to take users’ needs from various perspectives into account
and make features transparent among varied target users.

2.2 An Overview of Annotation System Features
In general, existing annotation systems can be categorized by how
the users interact with the systems: (i) fully-manual annotation, (ii)
automatic annotation, and (iii) semi-automatic annotation. In fully-
manual annotation systems, annotators have to manually make
all the annotations [7, 10, 18, 38], while the system provides the
least assistance. Conversely, with the automatic annotation system,
human annotators provide the least instruction where the systems
can generate annotations automatically [25, 39, 42]. A fully-manual
system typically demands substantial human effort, while a fully-
automatic system runs the risk of inaccuracy without human su-
pervision. The semi-automatic annotation system combines human
input and system output, where the human annotator can complete
the annotation task with AI-assisted features [5, 6, 17, 22, 27, 31, 37].
Semi-automatic annotation methods involve interactive annotation,
where annotators guide the AI models to refine their predictions
iteratively. Alternatively, some systems may offer tentative annota-
tions based on AI models, which may require manual adjustments
without real-time feedback.

Regarding how annotations are made, two common approaches
are used to select objects of interest. The first involves covering
regions, where closed shapes, scribbles, or supervised clicks are
used to cover and select target regions [19, 25, 27]. Another option
is to trace the object’s boundary, which is achieved by placing
vertices connecting lines [6, 29] or curves [22] along the boundary,
or by manually outlining it with a mouse or touch pen [2].

Systems typically offer two methods for providing feedback to
annotators. The first is an annotation mask, which is typically a
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translucent shape overlay featuring pixels that potentially belong
to the target or a line outlining the target boundary atop the im-
age. In semi-automatic annotation systems, the annotation mask is
predicted through an AI model, allowing annotators to refine these
suggested annotations to obtain the final annotation [16, 27, 31, 42].
Additionally, annotators might be interested in understanding why
the system suggests a specific region for annotation. Therefore, the
second type of system feedback involves providing explanations
for the predictions; such as visual heatmaps that indicate regions
highly correlated with human annotations [14].

2.3 Limitations in Existed Annotation Systems
Although there are numerous systems and approaches supporting
phenotypic traits annotation in prior work, previous research has
primarily concentrated on technical aspects. For example, Zeng et
al. [42] used automatic detection to extract preliminary roots, al-
lowing annotators to make corrections. Smith et al. [31] integrated
advanced AI techniques into a semi-automatic root annotation
system. However, these works mainly focused on algorithm devel-
opment, neglecting the diverse mental models of users and their
needs.

Plant scientists interested in using AI techniques for automatic
plant phenotyping may encounter challenges due to their limited
technical background, such as efficiently creating reliable annota-
tions. For example, in weed detection, common concerns include
whether a simple bounding box can locate weeds or if every indi-
vidual leaf needs manual delineation, along with concerns about
the time required for annotating numerous leaves in a grassland.
On the other hand, AI technicians are well-versed in how AI algo-
rithms work and can design systems tailored for precise pixel-level
annotations or less precise bounding box annotations. However,
they may require additional training to distinguish specific plant
traits, such as weed species or diseased plant organs.

Annotation plays a crucial role in AI algorithms. High-quality
annotation is essential for improving AI model quality, but it re-
quires considerable human effort. Plant annotators may question
the trade-off between AI model quality and the use of inaccurate
yet easily obtainable annotations. For instance, the YOLO algo-
rithm [24] is an effective method that can potentially be applied to
weed detection, which requires simple bounding box annotation.
However, in a grassland where weed and turf grass are mixed, the
accuracy of the bounding box may impact the model’s effectiveness.
Novice annotators may question the precision level of the bounding
box. They may wonder if including turf grass in the bounding box
or excluding weeds from the scene will affect the quality of weed
detection. On the other hand, it is important for AI technicians to
understand how users utilize AI-assisted features [6, 17, 31] and
their expectations. This understanding will enable AI techniques
to be more helpful in annotating.

These open questions give rise to diverse challenges in building
annotation systems to meet varying user needs. Therefore, our
study aimed to fill this gap by interviewing annotators to under-
stand their mental models and the actions they take to overcome
challenges during the annotation process. These insights are valu-
able for enhancing annotation systems, shedding light on what
constitutes an efficient and reliable system. In general, our study

contributes to a more comprehensive understanding of the factors
influencing plant phenotyping annotation.

3 METHOD
3.1 Participants Recruitment
We collected data via recorded, semi-structured interviews with
eight participants (M = 29.50 years old, S.D. = 5.34 years, three
female, five male). Participants were recruited through email invi-
tations and referrals. In-person interviews were conducted with
P03, P05, and P08, while virtual interviews were conducted with
P01, P02, P04, P06, and P07. The recordings were automatically
transcribed via Zoom and were used as the primary data source for
analysis. Prior to the interviews, all participants provided informed
consent through an anonymous consent form. Compensation at
a rate of 20 USD per hour was provided. Our procedures were
approved by our Institutional Review Board (IRB).

Our study focused on expert users with a diverse background in
terms of degree, major, experience, and software. All participants
in our study had experience annotating fine-grained plant traits,
focusing on various targets: plant roots (P02-P05, P07, P08), weeds
(P01), and plant stems (P06). P02, P03, P05, and P07 annotated
minirhizotron roots from different crops. In particular, P05 and
P07 worked with roots in a time series. P04 and P08 handled roots
grown in transparent plastic boxes. The diverse background of
participants and their experience using various annotation systems
are summarized in Table 1.

3.2 Interview Conduction and Analysis
The interviews, which spanned approximately 1-2 hours (M = 71.63,
S.D. = 14.86 minutes), were structured into three main sections. Ini-
tially, participants were asked about their background and previous
experience with annotation. We also inquired about their specific
targets of interest and how annotated data contribute to their re-
search, leading to a discussion on the significance of annotating
plant phenotypes within their respective domains.

Following the initial discussion, participants engaged in the an-
notation process using their preferred annotation system, working
with their own datasets (if available) and our provided images.
Throughout this process, participants were encouraged to think
aloud, enabling us to capture valuable insights. We closely observed
and documented their interactions with the system, paying particu-
lar attention to the mutual influence between user input and system
feedback. Specifically, user input referred to participants’ actions
and decisions, while system feedback encompassed visual cues,
display settings, and suggestions that guided participants’ annota-
tions. Additionally, we observed participants’ behaviors and spoken
thoughts on how the plant phenotypes impact the bidirectional
interaction between human and system.

Towards the end of our interviews, participants who worked
with systems that required fully manual annotation watched a short
video demonstrating an interactive annotation example. The ex-
ample utilized the "GrabCut [27]" algorithm to assist annotation.
In this video, annotator made simple freehand scribbles to cover
part of the target, and the system generated suggested annotations
based on this input. The annotator further refined the suggested
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Table 1: Participants Background

ID Degree Major Experience System
P01 Postdoc Researcher Agricultural Life Sciences 6 months LabelMe, CVAT
P02 PhD Electrical & Computer Engineering 2-3 year Winrhizo Tron, Image Annotator
P03 Master Electrical & Computer Engineering 3-4 months LabelMe, Matlab Image Labeler App
P04 PhD Electrical & Computer Engineering <1 month VIA
P05 Master Agricultural Ecology 1 year Winrhizo Tron
P06 PhD Agricultural & Biological Engineering 5 year Matlab Image Labeler App
P07 Postdoc Researcher Plant Physiology 7 year RootFly
P08 PhD Electrical & Computer Engineering 9 month Photoshop

annotations by drawing additional scribbles. The purpose of pro-
viding the example video was to collect participants’ opinions on
the interactive framework that employed AI techniques to assist
human annotation.

We employed a bottom-up analysis of the interview data by
utilizing an affinity diagramming [15] [32] technique to discern
emergent themes and patterns. This method aligns with the qualita-
tive analysis framework as delineated by Auerbach and Silverstein
[3]. Unlike traditional qualitative coding that involves calculating
inter-rater reliability (IRR), our approach involved two researchers
collaboratively reaching a consensus on the significant ideas and
concepts represented on sticky notes.

During the affinity diagramming process, interview data and ob-
servations recorded on sticky notes were organized into coherent
clusters through iterative discussions and refinements, eliminat-
ing redundancy and enhancing clarity. Subsequently, overarching
themes were extracted from these clusters, serving as the basis for a
more nuanced content analysis. This allowed us to delve into the in-
tricacies within each theme, identifying commonalities, variations,
and key insights. Finally, we explored inter-theme relationships to
uncover potential associations or implications, thereby enriching
our understanding of the data. This approach is particularly suited
for semi-structured interviews, as it helps getting a comprehensive
interpretation of the data about participants’ interaction process
with different annotation systems and also mitigates the risk of
applying the same code to different sections of the interview data.

3.3 Quantitative Measurements
To evaluate the consistency of annotations made by different par-
ticipants, we assigned four minirhizotron root image annotation
tasks from PRMI [38] to all participants. (See Fig. 1 for details.)
Then, we collected the binary mask, a visual representation indi-
cating the specific regions of interest as marked and annotated by
participants. Examples are shown in Fig. 2. To evaluate annota-
tion quality, we computed the Intersection of Union (IoU) score,
as suggested by well-known image datasets [7, 18]. The IoU score
measures agreement among annotators for each image task and
serves as an indication of annotation reliability, with a higher IoU
suggesting greater agreement.

4 RESULTS
4.1 User Annotation Experience
Participants commonly mentioned that target characteristics sig-
nificantly affected the annotation process, citing factors like color
contrast, shape, and size. Challenges arose when roots shared colors
with the background, making it hard to determine the boundary, as
observed by P08. P01 encountered similar difficulties when annotat-
ing weeds in turf grass due to visual similarities. Target shape also
played a role, with regular, thin, straight roots (P02) being easier
to annotate compared to irregular or winding roots with branches
(P02, P04). Size mattered, with broader leaves being simpler to an-
notate (P01), while P06 noted difficulties with tiny stems and needle
leaf occlusion. Artifacts like mud, dirt, sands, or stones in the soil
further complicated root identification, especially when mixed or
covered (P03).

Moreover, participants P05 and P07, familiar with minirhizotron
imaging, emphasized image quality’s importance. P05 pointed out
that blurry, out-of-focus images make root labeling challenging
due to unclear boundaries. P07 noted issues with tube installations
causing gaps between soil and the tube, degrading image quality and
increasing confusion during annotation. These insights underscore
collecting high-quality image is an essential initial step in accurate
and efficient plant phenotyping annotations.

Annotating solely from images, especially underground minirhi-
zotron root images, presented another challenge. Despite years of
studying plants, P05 expressed uncertainty about certain aspects of
the roots’ condition underground, such as distinguishing between
root hairs and fungi. Conversely, P08, who specializes in computer
engineering, mentioned that referring back and forth between the
actual roots cultivated in transparent plastic box and the root image
enhances annotation justification and accuracy.

Regarding the objective of annotation, we collected insights from
two perspectives. From the view of computer vision, P01-P04, P06,
P08 mentioned that the annotation will be used to generate the
training masks (i.e. groundtruth) for a machine learning image seg-
mentation model. From the view of plant phenotype study, P01 and
P06 further explained that the purpose of the image segmentation
model will be applied to weed (P01) or disease (P06) detection. The
extraction of root will be applied to various studies, including root
traits such as moisture (P04, P08), length and density (P07), and
nutrient cycling (P05).
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Figure 1: An overview of the assigned images with varieties of roots. Images are sourced from PRMI [38] dataset. (a) Sesame
roots with tiny root hairs. (b) Papaya roots that are straight and thick, with several artifacts such as bricks and stones (c) Cotton
roots with a lot of background noise. (d) Switchgrass roots which are thin, but with a clear boundary.

Figure 2: Example masks annotated by two annotators and their intersection of union

4.2 An Overview of the Investigated Systems
As described in Table 1, we investigated diverse annotation tools,
encompassing a broad spectrum of systems. These included root
tracking software explicitly designed for studying root phenotypes,
such as Winrhizo Tron [25] and RootFly [42]. Additionally, we
explored software specifically developed for computer vision appli-
cations such as CVAT [29], LabelMe [28], and VIA [8, 9]. In addition,
we incorporated general image editing software like Photoshop
[2]. Furthermore, Image Annotator was a simple GUI developed
by the participants’ (P02) lab to meet their demands of annotating
roots for their research project. Among the systems we studied, the
phenotypic software (Winrhizo Tron and RootFly) were powerful
in integrated plant trait analysis, such as root length and diame-
ter measurements. While systems designed for computer vision
and image processing (CVAT, LabelMe, VIA, and Photoshop) bene-
fited annotation in providing various options of annotation tools,
smooth image file import and export with intuitive interface. Our
focus primarily revolved around fully manual and semi-automated
annotation systems, wherein human input is necessary. Below, we
provided details of how annotation works in these systems, as well
as the system features and function related to annotation.

Table 2: Interactive Methods for Investigated Systems

Interactive Methods System Participants

Fully-manual

CVAT
Label Me
VIA
Winrhizo Tron
Photoshop

P01
P03
P04
P05
P08

Semi-automatic
Image Annotator
Matlab Labeler
RootFly

P02
P03, P06
P07

4.2.1 Interactive methods. How users interact with the system was
crucial in the annotation process. Table 2 categorizes the interac-
tion methods of our investigated systems and the corresponding
participants. Based on whether the system provides built-in model
to assist annotation or not, the systems were categorized as: (i)
fully-manual annotation (P01, P03-P05, P08); (ii) semi-automatic
annotation (P02, P03, P06, P07).

Notably, the role of the built-in model differed. Image Annotator
and RootFly both provided automatic root detection as a suggested
annotation. This allowed the annotator to save time by refining the
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fixed pre-predicted annotation instead of manually tracing every-
thing. The Matlab annotation toolbox (P03) offered a more flexible
approach to assist annotation. Instead of a fixed pre-trained model,
they provided a tool called "floodfill" that generated suggested an-
notation that was dynamically updated based on the annotator’s
input.

4.2.2 Annotation tools. In addition to the interactive method, par-
ticipants primarily employed two approaches for making annota-
tions: drawing polygons and freehand scribbles. (See Table 3 for
details.)

Regarding the polygon tool, participants usually had the option
to choose between regular (rectangle, circle, etc.) or irregular shapes.
Some systems offered both options, while root tracing systems like
Winrhizo Tron and RootFly only provided the rectangle option.
The process of drawing polygons was similar across popular anno-
tation systems (e.g., CVAT, Image Annotator, LabelMe, VIA). Users
clicked with the mouse to place vertices along the target boundary.
Operations in systems designed for minirhizotron root annotation
(Winrhizo Tron, RootFly) differed, as users were required to click
along the root spine line to place nodes indicating the upper and
lower boundaries of the rectangle and then adjust the width to
indicate the root diameter. Regarding freehand drawing, users may
employ scribbles to overlap the target in the Matlab system (P04,
P06) or draw a freehand line to trace the boundary of the selected
region in Photoshop (P08). In both approaches, users clicked to
indicate the starting point of their "painter brush" and then dragged
the mouse while keeping the button pressed to draw with the brush.

4.3 Usability Features of Annotation Systems
In addition to interactive methods and annotation tools, we also
reviewed system features intended to aid in the annotation pro-
cess. We focused on shape editing, annotation mask display, and
information editing functionalities used during annotation. This
comprehensive examination helped us understand the intersec-
tion of system functionality and user interaction in the annotation
process.

One key requirement for annotation systems was ease of edit-
ing, particularly in terms of error recovery and efficient copy/paste
functionality. Editing functions varied depending on the annotation
tool. For irregular polygons, most systems allowed the deletion of
the entire shape, and some, like CVAT, LabelMe, and VIA, enabled
vertex manipulation and more. Winrhizo Tron and RootFly offered
similar shape editing options, including node addition and deletion,
as well as diameter adjustment. They also supported copy com-
pleted annotation from one image to the new one. For freehand
annotations without editable vertices or edges, users like P06 and
P08 typically undid the last freehand selection or used an eraser
brush to remove unwanted regions.

Another significant feature was how the annotation mask was
presented. Since annotating mainly relies on visual clues, how the
created annotation was displayed over the image impacted the
user’s perception. Systems like CVAT and Matlab Image Labeler
allowed users to customize colors for annotation components (e.g.,
mask, boundary line, vertices), while RootFly and Winrhizo Tron
offered limited color options based on root status. Matlab Image
Labeler also enabled opacity adjustment. In Photoshop, user can

create a separate mask layer with a selected region and transparent
background. Besidesmanipulating the annotation components, Pho-
toshop offered basic image editing functions like color, brightness,
and contrast adjustment.

When it comes to editing annotation information, different sys-
tems offered varying degrees of flexibility. General annotation tools
such as CVAT, LabelMe, Matlab Image Labeler App, and VIA al-
lowed users to define their own label names. In contrast, systems
tailored for root application (Winrhizo Tron, RootFly) only sup-
ported default label category, such as live and dead root. In addition
to label information, system like VIA also allowed users to add
comments associated with specific annotation masks.

4.4 Challenges and Actions during Annotation
In this section, we focused on the annotation behavior of the par-
ticipants, exploring instances where annotators encountered chal-
lenges and their subsequent actions taken in response (Table 4).
Additionally, we investigated how system features could influence
and assist users in making decisions during the annotation process.
One key observation is that functions facilitating the editing of
image display settings played a crucial role in assisting annotators
in justifying regions of ambiguity. We also note that the chosen an-
notation tool could impact how users labeled the data, subsequently
affecting the overall annotation quality.

Figure 3: Cotton roots image showing color confusion. Roots
are mixed with surroundings in the box A. Roots are covered
by dirt in the box B.

4.4.1 Color confusion. One major challenge causing confusion
among participants was color. This confusion had two aspects:
target-background distinguishability, and label-image distinguisha-
bility. Out of eight participants, five (P01, P03, P05, P06, P08) of
them found that clear color contrast between roots and soil made
annotation easier. When roots blend with the background color
(Fig. 3, region A), participants made educated guesses to define
the root boundary while maintaining a smooth, thin-line shape.
System features can help here. For example, P01 mentioned that
zooming in on high-resolution images offered more precise visual
clues. When using systems with image editing capabilities, P08
adjusted brightness and contrast to distinguish the root structure
from bright surroundings.
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Table 3: Annotation Tools for Investigated Systems

Annotation tool System Participants

Polygons Irregular polygons CVAT, Image Annotator, Label Me, VIA P01, P02, P03, P04
Rectangles Winrhizo Tron, RootFly P02, P05, P07

Freehand scribbles Overlap with target Matlab Labeler P03, P06
Trace the target boundary Photoshop P08

Table 4: Challenges and User Actions

Challenges Actions Participants

Color confusion between
target and surroundings

Zoomed in a high-resolution picture to examine the boundary. P01
Utilized the system feedback to automatically identify the
confused root region. P03

preferred manually annotation instead of automatic floodfill
when the target cannot simply be distinguished by color. P06

Adjusted the image brightness and contrast. P08
Annotated all roots despite of varied root color. P01-P08

Color confusion caused
by annotation masks

Picked label color (pink) that is contrastive with target (green). P01
Changed mask opacity to examine label quality. P03
Switched between the mask layer and the image layer to examine
label quality. P08

Irregular boundary

Used the irregular polygon shape to trace the boundary. P01-P04Edited polygons after closing them.
Used freehand drawing to cover the root in a single direction. P03Adjusted the shape and size of freehand scribbles to align with the
target shape and boundary.
Traced the boundary with freehand drawings. P08

Tiny roots

preferred not to annotate the fluffy structure to avoid mislabeling
background elements. P05

Labeled the tiny roots to prevent any missing target. P07
Zoomed in on the images for a clearer view of the tiny roots. P06, P08
Observed the texture of a broader region. P08

Roots covered by soil

Annotated the root as "broken" when it was entirely covered by
black soil. P01-P04, P06, P08

Annotated the root as continuous even if it was entirely covered
by soil. P05, P07

Annotated the root as continuous if it was partially covered by
dirt with some level of transparency. P01-P08

Branches of root

Include all interconnected roots and their branches within a
single polygon. P01

Drew multiple polygons to cover main root and branches. P02, P04
preferred polyline tool which has more clear display settings and
reduce confusion of roots with complex branches. P04

General ambiguity
and uncertain

Examined root images from different time frames to understand
the growth of the roots over time. P05

Used previous experience as guidance. P06Conducted an initial annotation session followed by revisiting
the annotations later to correct any errors.
Took a preliminary overview of the dataset before annotation. P07

Intensive annotation time Used interactive annotation functions to save time P02, P03
Developed custom code to remove background P06
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When the interactive annotation was available, P03 used the
floodfill tool and began by selecting the most visually distinguish-
able bright root, allowing the system to automatically identify root
in the blurring region. P03 then only needed to erase the appar-
ently misclassified regions, such as granular bright stones. However,
there was concern that the interactive method might be not reliable
enough due to the algorithm (P06). Although P06 was aware of the
automatic floodfill tool, he preferred manual annotation since his
target (stem) and background (needle leaf) cannot be distinguished
by color, while the floodfill algorithm relies on color. Another color-
related confusion, expressed by P04, pertained to whether roots of
different colors should be labeled separately. However, our obser-
vations revealed that all participants, including P04, annotated all
roots in the image regardless of color. P04 suggested that future
tools allow users to categorize the annotations by color.

In addition to the color confusion between target and back-
ground, we observed that annotation colors similar to the image can
result in ambiguous justification. For example, the yellow line of
polygon in Label Me was difficult to see when P04 was annotating
a bright image where the cotton roots were mostly white (Fig. 3).
Conversely, when CVAT allowed user-defined annotation colors,
P01 mentioned that she usually chose pink, as it stood out from her
dataset where most pictures depicted green grass. Both P03 and P04
expressed a desire to change the default annotation color setting. In
addition to color, we noticed that P03 frequently adjusted the opac-
ity of the annotation surface to assess mask quality. Higher opacity
allowed more visual clues from the original image to be visible.
Lower opacity, with a clearly visible mask overlaid on the image,
helped in identifying mis-annotated targets. The layer switching
function in Photoshop aided P08 in similar ways to capture missing
targets.

4.4.2 Structure confusion. Participants often remarked the sophis-
ticated structure of the roots they annotated posed challenges that
could be categorized into several specific cases: irregular boundary,
tiny roots, roots covered by soil, and roots branches. We found
that the challenge of winding and irregular boundary tracing is
highly related to the participants’ choice of annotation tool. For
instance, out of six participants having experience with polygons,
four (P01-P04) preferred using irregular polygons because of their
personalized nature, allowing custom shapes matching root bound-
aries. P02, experienced with Winrhizo Tron (rectangle) and Image
Annotator (irregular polygon), favor the latter due to varying root
directions and diameters. However, P07, who used RootFly, men-
tioned that her minirhizotron root images featured consistent root
diameters that were appropriately captured by rectangular masks.

P03 found that using scribbles in Matlab annotation was faster
than polygons in LabelMe because it covered the entire root in one
direction, eliminating the need to click multiple times, forward and
backward. P08 emphasized the advantages of yielding finer and
more accurate boundaries with freehand drawings compared to the
"clunky polygon". P06, who also preferred scribbles, mentioned that
a touch screen and touch pen were even more helpful and efficient.
Although the systems used by some participants did not provide
a freehand option, we demonstrated this functionality in a video
and gathered their opinions. In manual annotation, P04 expressed
concern that drawing scribbles overlapping with the target might

take long time to get accurate and sharp boundary. P02 and P03
suggested adjusting the brush shape and size to align better with
the target. As for the case of interactive annotation, P02 found
scribbles efficient for highlighting specific target regions.

Utilizing interactive methods also had potential to relieve the
boundary tracing challenge. While P04 worked with a fully-manual
system, he proposed an interactive method to expedite his annota-
tion procedure. Instead of tracing the precise boundary of the target,
he suggested an automatic adjustment of the rough boundary based
on color gradient along boundary.

Another often-discussed question related to the root structure
was determining a size cutoff for inclusion in annotation. P05 men-
tioned being advised to annotate root hairs since they are functional
parts of the root. However, it often proved challenging to determine
whether the fluffy structure surrounding the root (Fig. 4, sesame,
region A) was fungus or root hair. Although there was no strict
criterion to determine the diameter at which a "tiny root" should
be annotated, we observed that all participants considered thin and
bright lines with clear and sharp boundaries as roots (Fig. 4, sesame,
region B), while six (P01-P05, P07) out of eight tended to disregard
blurred lines (Fig. 4, sesame, region C) to avoid false positive errors.
P08 used texture cues in a broader region to justify annotating
small roots. For instance, in Fig. 4, switchgrass, region A exhibits
a texture that implies the presence of tiny roots compared to the
plain soil in region B. Additionally, zooming in on images was also
found to be helpful for precise annotations on tiny roots (P06, P08).

Another challenging aspect related to the root structure was
when the root was partially or completely covered by soil, giving it
a "broken" appearance (Fig. 4, papaya, region A and B). Participants
wondered whether they should annotate the hidden part or just
the visible fragmented section, as they weren’t sure if the roots
were covered or broken. Our observations revealed that six out of
eight participants chose to annotate the root as "broken" when it
was entirely covered by black soil (Fig. 4, papaya, region A and B),
except for P05 and P07. However, when the root was covered by
dirt with some level of transparency, allowing the root structure
to be partially visible (Fig. 2, region B), all participants tended to
annotate the root as continuous.

The last challenge caused by root structure arose when annotat-
ing roots with branches. This challenge was particularly evident
when using the polygon tool, and different annotators made varying
decisions. For instance, P01 tended to include interconnected roots
and branches within one polygon, adjusting the path to accom-
modate convex holes. However, this may unintentionally exclude
some roots (when the convex hole was large and the roots were
small, Fig. 4, sesame, region E, Fig. 5a) or include background areas
(when the convex hole was small and the roots were thick, Fig.
4, sesame, region D, Fig. 5b). Others, like P02 and P04, annotated
one main root at a time but sometimes encountered issues with
disconnected (missing targets) between adjacent polygons (P04, Fig.
5c). Additionally, the display settings of annotation tools, like VIA,
can cause confusion on multiple root branches, when the system’s
default connection line appeared similar to the drawn line (P04).

4.4.3 General solution to uncertainty and ambiguity. Besides the
above specific challenges, we also collected general solutions to-
wards uncertainty and ambiguity from experienced annotators. P06,
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Figure 4: Sesame, switchgrass, and papaya roots images showing structure features of tiny roots (Boxes A, B and C in the sesame
roots image), tangled roots (Boxes D and E in the sesame roots image, Box A in the switchgrass roots image), plain soil (Box B
in the switchgrass roots image), and "broken" roots (Boxes A and B in the papaya roots image).

Figure 5: Sesame roots images overlapping with annotation
mask on tangled roots structure. (a) and (b) showcase tiny
roots mistakenly excluded and background mistakenly in-
cluded, respectively. (c) showcases broken between multiple
polygons.

P07, and P05 possessed extensive annotation experience spanning
several years or a significant number of annotated images. P07
mentioned that she adopted a preliminary overview of the entire
dataset before initiating the annotation process, allowing her to
gain insights into the distribution patterns of the roots. Similarly,
P05 examined root images from different time frames to under-
stand the growth of the roots over time. P06, whose focus was on

plant stems, emphasized the utilization of prior knowledge, stat-
ing that he distinguished between stems and needle leaves based
on previous experience (e.g., "stems has some vertical structures,
while needles branch out"). Additionally, P06 shared a way he used
to enhance annotation accuracy: conducting an initial annotation
session followed by revisiting the annotations later to correct any
errors. This approach allowed him to approach the task with a fresh
perspective.

4.4.4 Challenge of time-intensive annotation. In addition to the
challenges posed by uncertainty and ambiguity, the time-intensive
nature of annotation was a common issue highlighted by P01-P04,
and P08. The time required for annotation varied significantly de-
pending on factors such as the complexity of the image, the level
of precision needed, and the usability of the annotation tool. For
instance, P01 and P08 reported spending over an hour to annotate
complex images with intricate leaf (P01) or root (P08) structures.
Conversely, P06 took approximately one minute per image to an-
notate simple, straight plant stems. Participants (P01, P02, P04,
P06, P08) noted that achieving highly detailed annotations was a
time-consuming process, since they needed to clicking numerous
points to trace the precise boundary (utilizing the polygon tool by
P04), and zooming in the image to label tiny leaves (P01) or roots
(P08). Annotation tools also played an important role. For example,
both P06 and P08 used a touch screen for faster and more accurate
labeling compared to a mouse.

To address the challenge of time-intensive annotation, several
participants employed semi-automatic methods, including P02, P03,
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and P06. P02’s system had build-in automatic root detection, while
P06 coded from scratch to remove the background and then label
plant stems on the segmented seedling. P03, experienced with both
LabelMe (fully-manual) and Matlab Labeler (semi-automatic), pre-
ferred the latter due to its efficiency. Using the interactive method in
Matlab, the time required per image was reduced to approximately
1-5 minutes, compared to 5-10 minutes per image of fully-manual
annotation with LabelMe.

We showed participants using fully-manual systems a video
demonstrating the concept of interactive annotation, aiming to
accelerate the annotation process. We found that participants high-
lighted the time-saving benefits of system suggestions. All partici-
pants expressed their belief that the interactive approach can save
time and facilitate efficient annotation. "This is definitely our hope.
The idea of not having to trace the entire root makes sense," (P05).
However, participants also raised concerns about the quality of the
suggested annotation, which was usually determined by the un-
derlying algorithm, particularly in complex scenarios. For instance,
when targets were mixed with the background and share similar
colors (P01, P03, P04, P06), when the target exhibited color variation
(P04), or when targets overlaped with each other (P05). Another
concern arising from the quality of suggested annotations was that
annotators may spend more time correcting mis-annotated areas
(P01, P02, P08). The observation that P07 rarely used automatic
detection in RootFly due to poor-quality results suggested that the
accuracy of predictions is a crucial factor influencing annotators’
preference for labeling methods.

In summary, four (P02, P03, P06, P07) out of eight participants
had experience with the AI-assisted annotation feature. Of these,
P02 and P03 frequently used the feature to save annotation time.
While P06 and P07 were aware of the feature, they hardly used it
due to poor detection of their object of interest, which required
additional effort to modify the system prediction.

4.5 Labeling Consistency Among Participants
We measured the IoU among different participants to evaluate their
labeling consistency. According to our findings, labeling consis-
tency was highly influenced by image quality. Comparing annota-
tion methods, the flexibility and personalization provided by poly-
gon and freehand scribble contributed to more labeling agreement
among participants with varied background knowledge. Further-
more, when comparing the labels made within and between anno-
tation methods, our result implied that using different annotation
methods impacted the agreement among annotators.

We conducted a comparison of the IoU scores among all the
participants (P01-P08) as shown in Fig. 6b. Greater IoU implied
more agreement and consistent among annotations from different
participants. Specifically, we analyzed IoU scores for participants
based on their annotation tools: tracing spine line with diameters
in plant phenotyping software (Fig. 6c), polygons (Fig. 6d), and
freehand (Fig. 6e). The shaded red, green, blue and cyan color indi-
cate the intersection area, the gray color indicates the union but
not intersect area. It is important to note that the switchgrass root
example, being a non-regular image not directly captured by the

minirhizotron camera, could not be recognized by the plant phe-
notyping software and, therefore, was unavailable for inclusion in
Fig. 6c.

Our results showed that the labeling consistency were strongly
dependent on the visibility of roots. According to P05 and P07, who
had experience of in-field image collection, issues such as improper
tube installations and lack of proper camera focus can lead to poor
visibility of roots. The cotton root which was considered as low
quality among all the participants resulted in the lowest labeling
consistency. In contrast, the switchgrass and papaya image, where
the root can be easily identified, achieved more agreement. In the
context of annotation tools, our findings indicated that despite the
varied background of participants using freehand scribbles and
polygons, there was a slightly higher level of labeling consistency
observed with freehand scribbles (Fig. 6e) compared to polygons
(Fig. 6d). Additionally, both polygons and freehand scribbles exhib-
ited improved consistency when compared to root tracing (Fig. 6c)
by annotators with the same agronomy background. One possible
explanation was that polygon annotation provided users with the
ability to place multiple vertices along the root boundary, offering
increased flexibility compared to the regular spine line tracing with
fixed diameter to form a rectangle. Additionally, freehand scrib-
bles provided an even greater level of personalization. Therefore,
allowing users more freedom in drawing led to a more accurate
representation of the targeted root structure, and more agreement
even among the annotators with diverse background.

Furthermore, a significant decrease in labeling consistency was
observed when comparing the annotation masks collected from all
participants (Fig. 6b). To ascertain whether this decline in perfor-
mance was attributable to variations in annotation tools or varia-
tions among participants, we conducted a more detailed investiga-
tion of the labeling consistency within the same annotation tools as
well as between different tools. Specifically, we calculated the pair-
wise consistency between each pair of participants and categorized
all pairwise consistencies as either "within" or "between" annota-
tion tools. The box chart in Fig. 6f illustrates that in most tasks
(Sesame, Papaya, Switchgrass), the median pairwise consistencies
within annotation tools are higher than those between different
tools. These disparities suggested that the mental models of annota-
tors might be affected by the annotation tools, leading to divergent
labeling behaviors and decisions. To construct reliable annotation
for plant trait dataset, it is important to take a comprehensive con-
sideration of annotators’ expertise and the influence of their chosen
annotation tools.

5 DISCUSSION
According to the mapping of challenges and corresponding actions
discussed above, we summarized common user needs. These needs
were based not only on the actions taken on current systems but
also on open challenges that need resolution. Then, we derived sev-
eral implications for designing an efficient and reliable annotation
design to support fine-grained phenotypic traits annotation.
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Figure 6: The consistency between masks annotated by varied participants in (a-e), and bar chart for pairwise consistency
within and between annotation tools in (f).

5.1 Clear image and annotation view
Our users’ need for image clarity arose from the reliance on visual
cues, as distinguishing the target area in images was greatly depen-
dent on their visual appearance. Basic functionalities like zooming
in and out, adjusting brightness and contrast were valuable for
examining the image. Additionally, editable display settings for the
annotation components, including color and opacity, can help avoid
confusion caused by mask color.

5.2 Flexible annotation tools
Users need a certain level of flexibility to create personalized shapes
that accurately represent the root boundaries efficiently. Features
like adjustable settings, such as brush shape and size in freehand
scribbles and editable vertex points in polygon annotations, pro-
vided users with the flexibility to prevent errors, particularly in
cases involving intricate and tangled root structures. Besides, semi-
automatic interactive annotation with reliable root detection can
enhance efficiency by saving annotation time. The incorporation
of multi-modal interaction methods, including keyboard, mouse,
and touchscreen inputs, offered users diverse and intuitive ways to
trace targets. Therefore, providing a variety options of flexible an-
notation tools can significantly accommodate various preferences
and ultimately facilitating more precise and efficient annotations.

5.3 Uncertainty resolution
Participants often expressed uncertainty during annotating. Their
decisions were based on their experience and habits, leading to

potentially divergent actions. For instance, P01, preferred labeling
tiny roots to avoid missing any targets, while P05 chose to ignore
extremely small roots to prevent mislabeling the background. To
address annotator uncertainty, the system can offer two solutions.
First, systems can facilitate adding explanatory notes when they
are uncertain, such as distinguishing between root hair and fungus.
These notes help annotators review and revise their annotations
as needed. Second, reliable automatic detection from system can
serve as guidance to address confusion. For instance, an automatic
detection system can identify tiny roots, aiding annotators in mak-
ing quicker decisions. These solutions can be combined for greater
flexibility. For example, the system can predict all small roots, cate-
gorize them by different sizes, and let users add confidence notes
for each group.

5.4 AI-assisted annotation
The AI-based feature had the potential to save annotation time.
However, users expected automatic root detection to be accurate,
explainable, and adaptable to different needs. Inaccurate detection
risked extra effort to correct the mis-annotated regions and may
cause users to opt out of the semi-automatic option. Explainable
feedback helped users to easily handle the AI feature. For example,
P03 received system feedback based on color, which influenced
his behavior to select the most visually distinguishable bright root.
Users wanted to understand the mechanism of automatic detection
to make better use of the AI-assisted feature efficiently. Additionally,
flexible automatic detection adaptable to various scenarios would
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be beneficial. For instance, adjustable parameters can help users
group detected roots by color and shape, based on their research
focus.

5.5 Efficient image navigation
Integrating features that provided a comprehensive view of the
entire image dataset is essential. These functions, combined with
seamless image navigation, empowered users to understand how
targeted phenotypic traits appear across diverse backgrounds. This
capability helped resolve uncertainties that may occur when work-
ing with specific images.

6 LIMITATIONS AND FUTUREWORK
This study had several limitations, including its focus on a specific
type of phenotypic trait, a relatively small sample size, and inher-
ent challenges associated with relying on self-reported interview
data. We focused on annotating specific fine-grained traits found in
various plant organs, such as roots, grass leaves, and stems. How-
ever, the challenges associated with other types of phenotypic traits
may differ significantly. Additionally, while our participant pool
included individuals from diverse backgrounds, including agron-
omy and computer engineering, with varying levels of education,
a broader and more experienced participant pool would have pro-
vided further insights. Besides, the reliance on self-reported infor-
mation about system features, particularly regarding the absence
of certain features, may introduce imprecision. Although partici-
pants were encouraged to clarify whether the system genuinely
lacked these features or if they were simply unaware of how to
use them, the study’s findings could be further strengthened by
validating system features with a larger and more diverse user base.
Moreover, we acknowledged the challenges of implementing solid
quantitative analytics in our small-scale study with participants
using diverse software with varying features. In the current study,
we concentrated the quantitative analytics on a fundamental fea-
ture, the annotation tools, and primarily investigated its impact on
annotation agreement. However, it is also important to identify the
effect of other key features.

To address the limitations, we plan to conduct additional in-
terviews that encompass a broader range of phenotypic traits, in-
cluding those across florets and fruits. Moreover, expanding the
participant pool to include more individuals will allow us to gener-
alize our conclusions more effectively. Additionally, we intend to
conduct follow-up interviews with the participants from this study
to ensure the accuracy of our interpretations of the qualitative data.
On the quantitative data side, a more comprehensive analysis that
includes additional system features would improve our understand-
ing of how these features are used by users and the extent to which
they contribute to annotation efficiency.

7 CONCLUSION
Our interview study identified the fundamental functions and fea-
tures of systems employed by experienced annotators for plant trait
annotation. We identified challenges in annotating fine-grained
plant traits across diverse annotator backgrounds. These challenges
were categorized into difficulties related to color and difficulties re-
lated to structural complexities. We analyzed how the participants

addressed the challenges with existing system features, and thereby
identified common user needs and implications of system design: i)
functionalities that provide a clear view for accurate assessment
of image color; ii) flexible annotation tools such as personalized
polygon and freehand scribbles; iii) functionalities to help manage
uncertainty; iv) reliable, explainable and adaptive automatic detec-
tion mechanisms that assist users in making informed decisions
efficiently; v) easy image set scanning and review capabilities. We
believe that these insights will significantly contribute to the de-
velopment of future robust plant trait annotation systems. Beyond
software design, we are also contributing to an instance of studying
user needs for an AI-based annotation system, which is a crucial
step in supporting more AI-based agricultural applications.
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